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Chap.4 Duct Acoustics 

 About “Duct acoustics”

 Industrial use

 Efficiency

 Predictability

Complexity

Ducts are able to efficiently transmit sound over large distances! 
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 Wave dynamics
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1. Navier-Stokes equations 

Basic assumption for homogeneous linear formulation
• Waves are free of non-linear effects and propagate with speed of sound 

• Temperature change (heat transfer) is negligible

• Viscous effects are sufficiently diminished in free space

• No external force (or source)
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 Wave dynamics
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2. Linearized Euler equations (2-D)

• Fourier-Laplace transformation
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• Dispersion relation (Relationship between frequency and wavenumber)
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: Entropy and vorticity waves

: Acoustic waves
2 2 2 0c kω − = : Acoustic waves w/o mean flow c

k
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= :phase velocity
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 Wave dynamics

3. Wave Equations

• Momentum conservation
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• Mass conservation

• Assuming there is no mean flow:
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• Assuming pressure is a function of density alone,
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,in 3D:
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 Duct acoustic problems
• Ventilation ducts
• Exhaust ducts
• Automotive silencers
• Shallow water channels and surface ducts in deep water
• Turbofan engine ducts

 How to Solve?

• Modelling to simple geometry (circular or rectangular ducts)
• Appropriate assumptions (harmonic solution, no mean flow, linearization and so on..)
• Dispersion relations
• Mathematical functions
• Boundary conditions

Analytical approach

 Experiment
Numerical simulation
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 Cylindrical duct
• Modelling to simple geometry: simple cylindrical duct with hard wall 

• Appropriate assumptions: assume harmonic separable solution  
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, Cylindrical Laplacian:  
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• From dispersion relation of acoustic waves,

Chap.4 Duct Acoustics 

• assuming harmonic separable solution,

• If we substitute derivatives over functions into some independent variables,
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mR(r)= J (r)

2 2 2 2( ) 0mnr mµ′′ ′+ + − =r R rR R

• Final equation resembles Bessel function

αy = J (x)
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• General solution of first derivative of Bessel function: 

[Mode shapes of Bessel function]
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• From dispersion relation axial wavenumber become,
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• General Solution of Duct acoustics

Cut-off frequency

Chap.4 Duct Acoustics 
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• Modes and mode shape functions

In seeking a solution for the pressure field in a duct we obtained, not a single unique solution, but a 
family of solutions. The general solution is a linear superposition of these ‘eigenfunction’ solutions:
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The resultant acoustic pressure in the duct is the weighted sum of fixed pressure patterns across the 
duct cross section. Each of which propagate axially along the duct at their characteristic axial phase 
speeds. 
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• Mode shape functions of cylindrical duct

The first roots of the derivative of the Bessel function 

• Example

Consider a duct with radius a=0.5m, 
c=340m/s, sound frequency=3000rpm.
Which modes will propagate?

, ( ) 0mn m mnα α′∀ =J
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Rectangular duct

• As an illustration, the sound of frequency ω in a rigid walled duct 
of square cross-section with sides of length a is considered

• With substitution for p′ into the wave equation,
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• Since  a wall boundary condition is applied, function f is derived

• Similarly function g is derived

• Finally, function h is derived to the propagation form

• The axial phase speed, cp=ω/kmn is now a function of the mode number 
and the propagation of a group of waves will cause them to disperse.
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• The pressure perturbation in the (m,n) mode has the form

• When kmn is real, the pressure perturbation equation represents that 
waves are propagating down the x3 axis with phase speed.

• When kmn is purely imaginary, i.e. exceeds the cut-off frequency, 
the strength of mode varies exponentially with distance along the 
pipe. Such disturbances are evanescent
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• Modes shape functions of rectangular duct
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